详细内容 当前位置:首页 > 科学研究 > 学术交流
【明理讲坛】数学中心“非线性偏微分方程”学术报告会
发布时间:2021-05-27【告诉好友】 【关闭窗口】

数学中心“非线性偏微分方程”学术报告会

会议主题:杨志坚教授学术讲座

会议时间:2021/05/28 9:15-11:30

腾讯会议ID:959584017

报告人: 杨志坚 教授 (郑州大学)

报告题目:Regular solutions and strong attractors for the Kirchhoff wave model with structural  nonlinear damping

报告摘要:

In this talk, we investigate the well-posedness and longtime dynamics of the    Kirchhoff wave model with structural nonlinear damping. We find a new critical exponent and show that  when the growth exponent of the nonlinearity is of the optimal growth: (i) the IBVP of the equation is well-posed and its weak solution is just the strong one; (ii) the related solution semigroup has a strong global attractor and an strong exponential attractor, whose compactness, boundedness of the fractal dimension and the attractiveness are all in the topology of the strong solution space, respectively;  (iii) the family of global attractors is upper semi-continuous on the perturbation parameter in the topology of the strong solution space. These results break though the longstanding existed growth restriction for the uniqueness index, deepen and extend the results in recent literatures.

报告人简介:

杨志坚  郑州大学理学博士,日本九州大学数理学博士,郑州大学2级教授,博士生导师,河南省跨世纪学术、技术带头人,河南省数学会常务理事,美国 《Mathematical Reviews》评论员,《Journal of Partial Differential Equations》期刊编委。主要研究非线性发展方程的整体适定性及对应的无穷维耗散动力系统的长时间动力学行为。主持完成多项国家自然科学基金面上项目;已在JDE,Nonlinearity,DCDS,中国科学,等国内外SCI期刊上发表论文70多篇。获得河南省科技进步二等奖1项。


      
      
【关闭窗口】